If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2+15m+8=0
a = 7; b = 15; c = +8;
Δ = b2-4ac
Δ = 152-4·7·8
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-1}{2*7}=\frac{-16}{14} =-1+1/7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+1}{2*7}=\frac{-14}{14} =-1 $
| 2|25x|+50=100 | | z/6-8=0 | | 7h+31−10=35 | | 5(-8k+4)+4=24+k | | r+3=11 | | 24/5z+4=4/2-1 | | 0=x^2+(1/5)x | | 8r-14=42 | | |(5/4)+2x|=(1/6) | | -5=-4+u/3 | | 0=x^2+1/5x | | 125m−100m+43,425=45,675−200m | | -8+y=3 | | 2c+5=10 | | 1/3(12y+3)-6=-13 | | -7-8a=-5(3+2a) | | 175m-75m+53,075=56.35-175m | | 1/8c=500 | | -q/3+12=2 | | 22=3e+7 | | 3.2x-3.6=-8 | | x/8+3=-7 | | x2−3x−70=0 | | 16x-18➗5=-8 | | C(X)=(x)(2400x+7)-(20x^2+7x+3500) | | 1x/7-5/8=7/8 | | 4v-3=27 | | |7x+126|=14x | | -2(-c-16=-2c-16 | | 6.8x-4.1=6.10 | | X+4y+14=0 | | 10z-z=-2+6z-1-6 |